Long-distance contributions to $B \rightarrow K l^+ l^-$

Shoji Hashimoto (KEK, SOKENDAI)

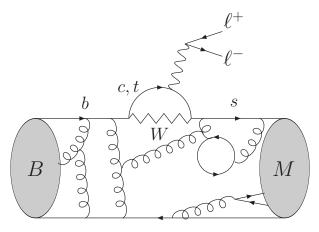
in collaboration with T. Ishikawa (SOKENDAI), T. Kaneko, (KEK,SOKENDAI), K. Nakayama (Osaka→DESY Zeuthen) and other members of JLQCD

Sep 24, 2019

© BNL Lattice X Intensity Frontier Workshop

$B \rightarrow K l^+ l^-$

FCNC process, penguin induced:



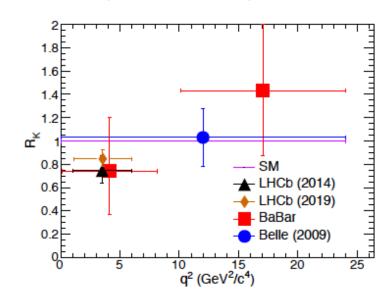
$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_R,$$

$$\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell),$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$$

Lepton Flavor Violation?

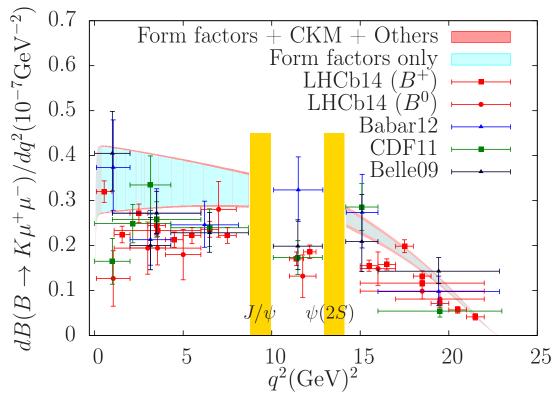
$$R_K = \frac{\Gamma(B \to K\mu^+\mu^-)}{\Gamma(B \to Ke^+e^-)}$$



$B \rightarrow K l^+ l^-$

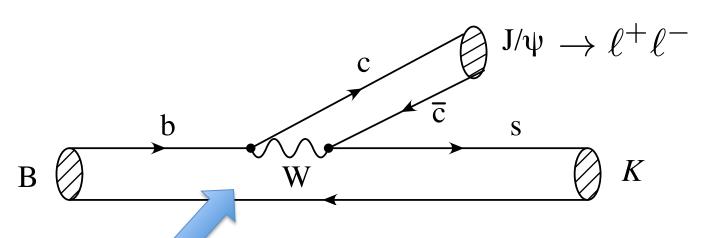
Already, at the level of BR...

Fermilab-MILC (Du et al.), PRD93, 034005 (2016).



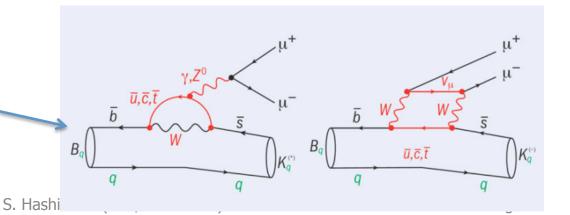
Complication due to...

enhancement due to resonances



$$\mathcal{O}_2 = (\bar{s}_L \gamma_\mu c_L)(\bar{c}_L \gamma^\mu b_L)$$

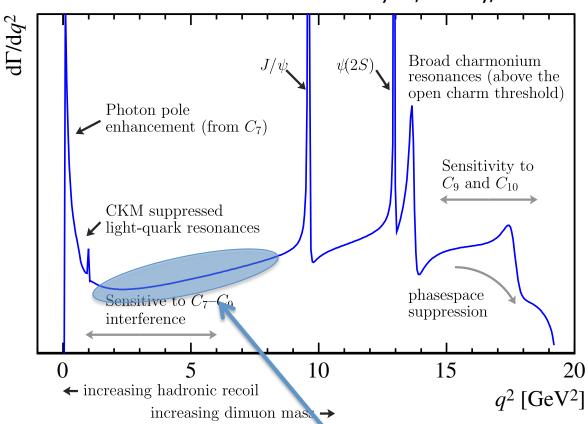
tree vs loop



Sep 24, 2019

Long-distance effect?

Lyon, Zwicky, arXiv:1406.0566



Insensitive to the resonance effects? Probably, but how much?

A way to estimate = factorization

vacuum polarization from e+e- $J/\Psi,\Psi'$ BK $rac{d {
m Br}}{d \sqrt{q^2}} [B^+ o K^+ \mu \mu] / 10^{-7} {
m GeV}^{-1}$

It doesn't look like a good approximation...

 $\Psi(4040)$ $\Psi(4160) \quad \Psi(4415)$ 2.5 $\Psi(3770)$ $\mathrm{Im}[h(\sqrt{q^2})]$ 1.5 0.5 4.2 3.6 3.8 4.4 4.6 4.8 $\sqrt{q^2}/{\rm GeV}$ Factorisation LHCb $\Psi(4160)$ $\Psi(3770)$ 2.5 $\Psi(4040)$ $\Psi(4415)$ 1.5

> 4.2 $\sqrt{q^2}/\text{GeV}$

Lyon, Zwicky, arXiv:1406.0566

3.6

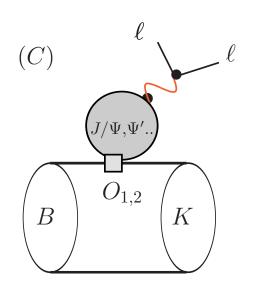
3.8

Analyticity:

C. Bobeth, M. Chrzaszcz, D. van Dyk, J. Virto, "Long-distance effects in B→K*II from analyticity," Eur. Phys. J. C78, 451 (2018); arXiv:1707.07305.

Analyticity

$$\epsilon_{\alpha}^* \mathcal{H}^{\alpha\mu}(q,k) = i \int d^4x e^{iqx} \langle \bar{K}^*(k,\epsilon) | \mathcal{K}^{\mu}(x,0) | \bar{B}(p+k) \rangle,$$
$$\mathcal{K}^{\mu}(x,y) = T\{j_{\text{em}}^{\mu}(x), C_1 \mathcal{O}_1(y) + C_2 \mathcal{O}_2(y)\}$$

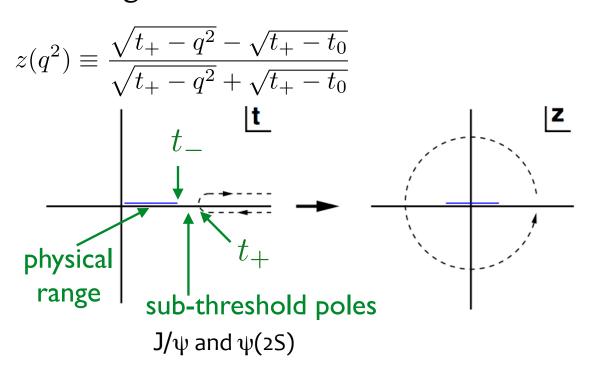


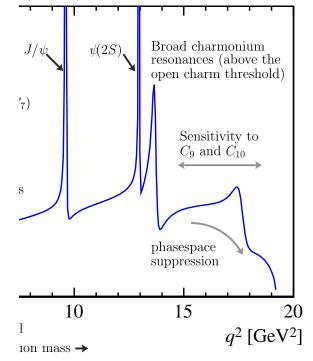
$$\mathcal{O}_1 = (\bar{s}_i c_j)_{V-A} (\bar{c}_j b_i)_{V-A}$$
$$\mathcal{O}_2 = (\bar{s}_i c_i)_{V-A} (\bar{c}_j b_j)_{V-A}$$

Try to parametrize the exp data in a systematically improvable form.

z-expansion

The amplitude is a smooth function of the "z" variable, once the singularities are taken out.





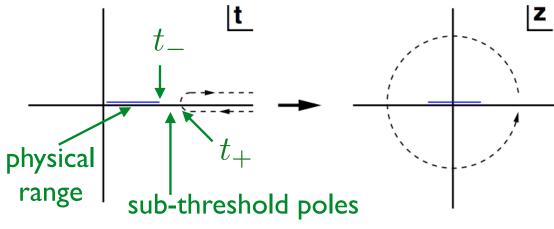
z-expansion

 J/ψ and $\psi(2S)$ pole singularities are taken out:

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}^*}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}^*}{z - z_{\psi(2S)}} \hat{\mathcal{H}}_{\lambda}(z),$$

$$\hat{\mathcal{H}}_{\lambda}(z) = \left[\sum_{k=0}^{K} \alpha_k^{(\lambda)} z^k\right] \mathcal{F}_{\lambda}(z)$$

Remaining function should be well-described by a polynomial of z.



 J/ψ and $\psi(2S)$

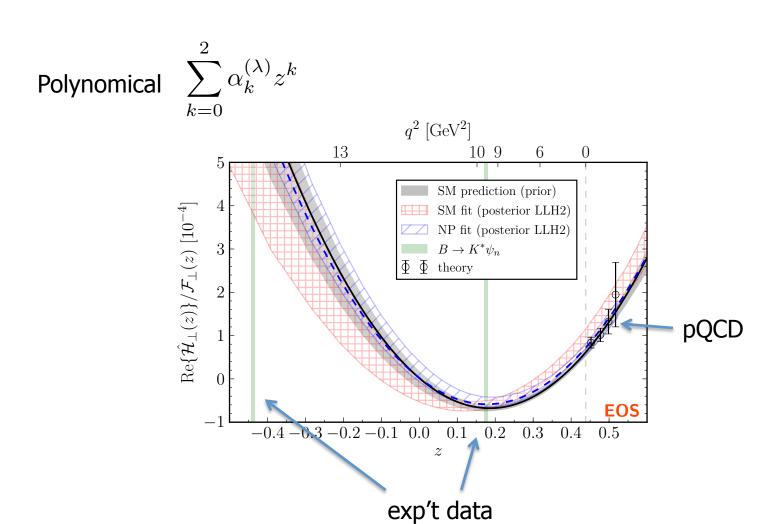
Inputs

Need some inputs to determine the coefficients α_{k}

1. Known amplitudes of real decays $B \rightarrow K^* \psi_n$

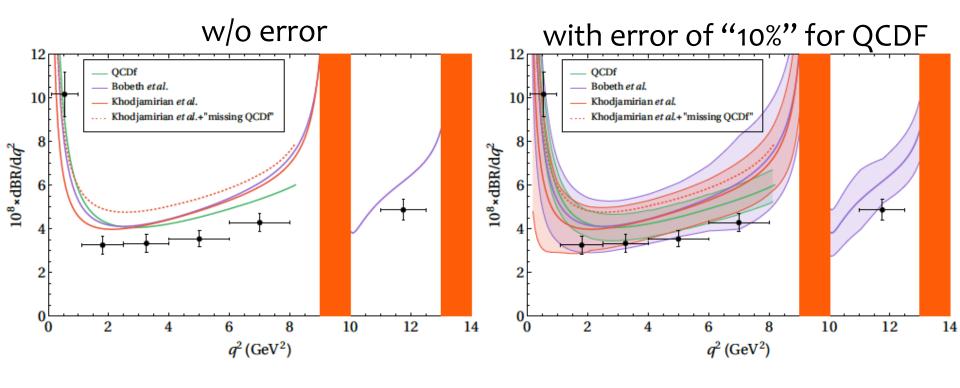
$$\mathcal{H}_{\lambda}(q^2 \to M_{\psi_n}^2) \sim \frac{\langle 0|j_{\rm em}^{\mu}|\psi_n(q,\varepsilon)\rangle \mathcal{A}_{\lambda,\psi_n}^{\mu}}{M_B^2(q^2 - M_{\psi_n}^2)} + \cdots$$

- 2. Perturbative calculation at q²<0
 - QCD factorization at $O(\alpha_s)$
 - could be more than one points



Comparison of various theoretical estimates:

Arbey, Hurth, Mahmoudi, Neshatpour, Phys. Rev. D98, 095027 (2018); arXiv:1805.06378



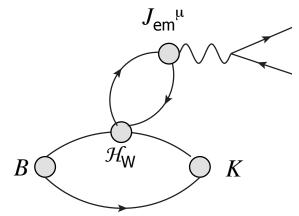
Can lattice be of any help?

• Nakayama, Lattice 2018, 2019

Lattice calculation?

Nakayama @ Lattice 2018, 2019

Corresponding amplitude:



$$\mathcal{H}^{\mu}(p_B, p_K) = \int d^4x \, e^{iqx} \langle K(\mathbf{p}_K) | T[J^{\mu}_{(em)}(x) \mathcal{H}_W(0)] | B(\mathbf{p}_B) \rangle$$

Euclidean

$$\int_0^\infty dt \, e^{\omega t} \int d^3 \mathbf{x} \, \underline{e^{i\mathbf{q}\cdot\mathbf{x}}} \langle K(\mathbf{p}_K) | \underline{J}_{(\mathrm{em})}^{\mu}(x) \mathcal{H}_W(0) | B(\mathbf{p}_B) \rangle$$

energy specified

momentum inserted for charmonium

$$(\bar{c}\gamma_{\mu}P_Lb)(\bar{s}\gamma_{\mu}P_Lc)$$

Limitation

Internal charm quark loop has to be off-shell.

$$\int_0^\infty dt \, e^{\omega t} \int d^3 \mathbf{x} \, e^{i\mathbf{q} \cdot \mathbf{x}} \langle K(\mathbf{p}_K) | J_{(\text{em})}^{\mu}(x) \mathcal{H}_W(0) | B(\mathbf{p}_B) \rangle$$

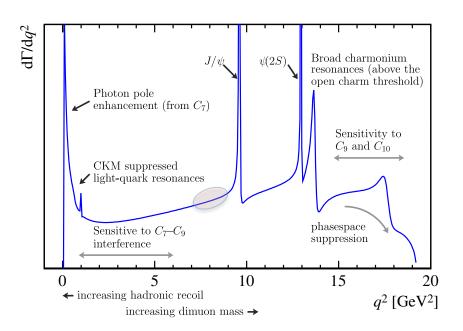
- = energy ω inserted to $J^{\mu}_{(em)}$ should be less than the corresponding ground state energy
- Possible internal state must be heavier than the initial/final state. (Otherwise, the t integral diverges.)

$$\omega < m_{J/\psi} - (E_K - m_K)$$

- Treating the physical kinematics is very challenging because of the large recoil momentum ~ 1.7 GeV/c.
- Maybe the method is more realistic for $D \rightarrow \pi \phi \rightarrow \pi II$?

Limitation

• Instead, we consider the case of artificially small B meson mass (then, small recoil momentum, say 0.5 GeV/c). Maximum possible q^2 is 1.5 GeV² below $m_{J/\psi}^2$.



Can we learn something??

 Test of the factorization approximation

Similar problem

Formulation borrowed from "long-distance effects to $K \rightarrow \pi l l''$ Christ et al (RBC/UKQCD), PRD92, 094512 (2015); PRD94, 114516 (2016).

Our case is simpler, because

- Interested in only one diagram (charm-loop), compared to many possible diagrams to $K \rightarrow \pi ll$.
- We don't have to subtract unphysical contribution due to the states of lower energy. (We avoid by limiting the kinematics.)
 - $K \rightarrow \pi^* \rightarrow \pi l l, K \rightarrow (\pi \pi)^* \rightarrow \pi l l$

Our case is harder, on the other hand, due to the kinematics.

A pilot lattice study:

- on a 2+1 flavor domain-wall ensemble
- valence domain-wall, tuned charm, too light bottom

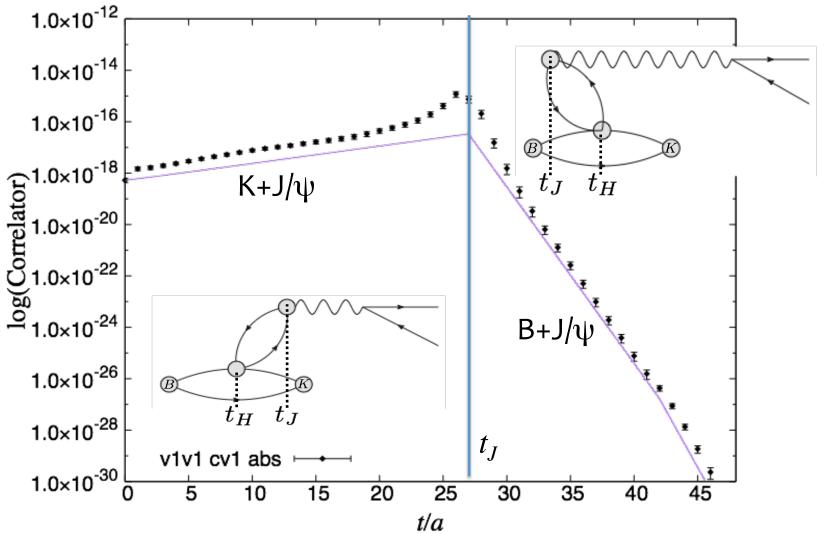
$\overline{\beta}$	a^{-1} [GeV]	$L^3 \times T(\times L_s)$	am_{val}	am_c	$\overline{am_b}$
$\boxed{4.35}$	3.610(9)	$48^3 \times 96(\times 8)$	0.025	0.27287	0.66619

ap	# Conf.	$m_{\pi} [{ m MeV}]$	$E_K [\mathrm{MeV}]$	$E_{J/\psi} [{ m GeV}]$	$m_B [{ m GeV}]$
$-\frac{2\pi}{L}$ (1,0,0)	390	714(1)	854(3)	3.128(1)	3.44(1)
$-rac{2\pi}{L}$ (1,1,0)	400	714(1)	969(9)	3.158(1)	3.44(1)

Energies don't match. Assuming HQET, may adjust m_B .

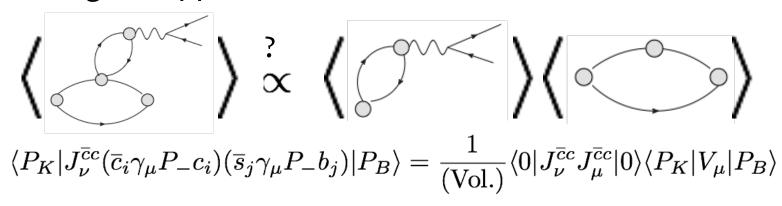
four-point function calculated for

$$\Gamma_{\mu}^{(4)}\left(t_{H},t_{J},\mathbf{p},\mathbf{k}\right) = \int d^{3}\mathbf{x}d^{3}\mathbf{y}e^{-i\mathbf{q}\cdot\mathbf{y}}\left\langle \phi_{K}\left(t_{K},\mathbf{k}\right)\mathrm{T}\left[J_{\mu}\left(t_{J},\mathbf{y}\right)H_{\mathrm{eff}}\left(t_{H},\mathbf{x}\right)\right]\phi_{B}^{\dagger}(0,\mathbf{p})\right\rangle$$



Factorization?

Is this a good approximation?



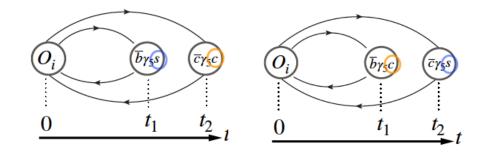
- gluon exchange is missing:
- any rescattering is missing.
- → Test with the lattice calculation.

Renormalization constants:

Ishikawa @ Lattice 2019

determined in a scheme to match charmonium time moments

$$\langle O_1 \rangle_R = Z_{11} \langle O_1 \rangle + Z_{12} \langle O_2 \rangle$$
 $Z_{11} = Z_{22} = 0.669(11)$
 $\langle O_2 \rangle_R = Z_{21} \langle O_1 \rangle + Z_{22} \langle O_2 \rangle$ $Z_{12} = Z_{21} = 0.093(4)$



Renormalization condition:

 These amplitudes become equal to their tree value at a certain distance.

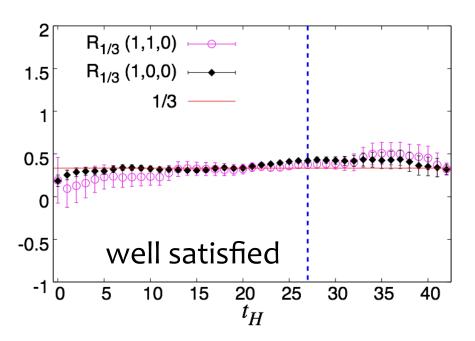
Under the factorization approximation

$$R_{1/3} \equiv \frac{\langle O_2 \rangle_R}{\langle O_1 \rangle_R} \rightarrow 1/3$$

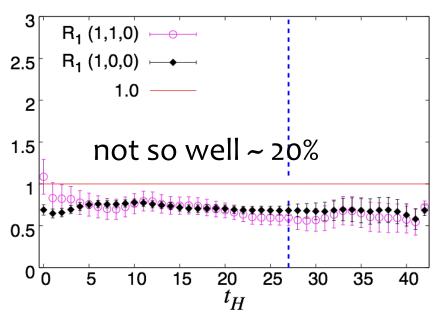
$$R_1 \equiv \frac{\langle O_1 \rangle_R}{\langle J_{\nu}^{\overline{c}c} J_{\mu}^{\overline{c}c} \rangle_R \langle P_K | V_{\mu} | P_B \rangle_R} \rightarrow 1$$

$$R_{1/3} \equiv rac{\langle O_2
angle_R}{\langle O_1
angle_R}$$

$$O_2^c = rac{1}{3} O_F^{(1)} + 2 O_{NF}^{(8)}$$



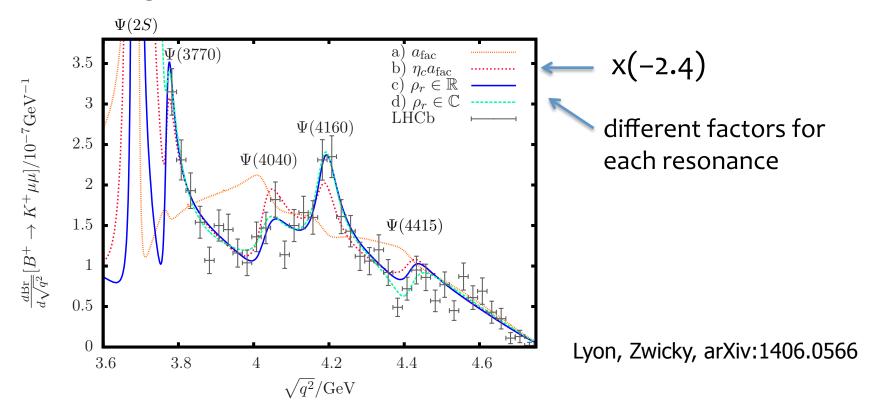
$$R_1 \equiv rac{\langle O_1 \rangle_R}{\langle J_{
u}^{\overline{c}c} J_{\mu}^{\overline{c}c} \rangle_R \langle P_K | V_{\mu} | P_B \rangle_R}$$
 $O_1^c = O_F^{(1)}$



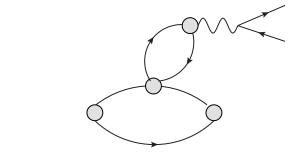
Factorization?

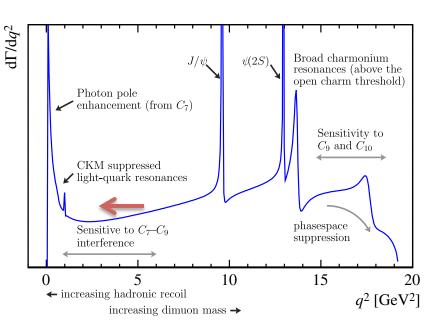
Not always satisfied well.

- But the deviation seems to be a constant.
- Pheno suggests that the deviation is to be x(-2.4) or energy (or time) dependent.



Lattice is not a solution, alone





- Only the region far below J/ψ is accessible.
 - Otherwise one need to subtract the lower energy states (as in K→πII)
- Recoil momentum too low ~
 0.5 GeV compared to > 2.5 GeV (physical)
 - How does the amplitude depend on the momentum?
 - Real calculation is still too hard.

Problems...

- Many issues...
 - What happens for larger recoil momenta
 - Energy (or q^2) range is (too) far from the region of interest.
 - Spectator is strange: η_s rather than K.
- Possible extensions?
 - Can the region between 1S and 2S be analyzed in a similar manner?
 - Maybe even the higher excited states, where recoil momentum is small. Sort of "inclusive measurements" possible?